mosaicos

Montevideo, Uruguay - 4/09/09 - mosaicos.gauss@gmail.com - MATEMÁTICA

 

     

El problema de los puentes de Königsberg

 

    El problema de los siete puentes de Königsberg ( Prusia oriental en el siglo XVIII -ciudad natal de Kant - y actualmente, Kaliningrado, provincia rusa ) es un célebre problema matemático que fue resuelto por Leonhard Euler en 1736 y dio origen a la Teoría de los grafos.

Consiste en lo siguiente:

Dos islas en el río Pregel que cruza Königsberg se unen entre ellas y con la tierra firme mediante siete puentes. ¿Es posible dar un paseo empezando por una cualquiera de las cuatro partes de tierra firme, cruzando cada puente una sola vez y volviendo al punto de partida?

Euler enfocó el problema representando cada parte de tierra por un punto y cada puente, por una línea, uniendo los puntos que se corresponden. Entonces, el problema anterior se puede trasladar a la siguiente pregunta: ¿se puede recorrer el dibujo terminando en el punto de partida sin repetir las líneas?

Euler demostró que no era posible puesto que el número de líneas que inciden en cada punto no es par (condición necesaria para entrar y salir de cada punto, y para regresar al punto de partida, por caminos distintos en todo momento). En teoría de los grafos esta idea se corresponde con la posibilidad de encontrar un Ciclo Euleriano en un grafo.

Este mapa de Königsberg de la época de Euler muestra dónde se encontraban los siete puentes (en verde claro) y las ramas del río (en azul cielo).

       

 

 

 

 

 

Inicio | Libros | Portales | Materiales | El Foro de Gauss | Curiosidades | Acertijos
Desarrollado por znog :: znogwebs@gmail.com